home *** CD-ROM | disk | FTP | other *** search
/ MacFormat 1995 December / macformat-031.iso / mac / Shareware City / Science / LifeLab 3.0 / Patterns / Dean Hickerson / RLE patterns / oscillators / venetian blinds < prev   
Encoding:
Text File  |  1993-01-18  |  2.6 KB  |  42 lines  |  [TEXT/LLAB]

  1. #N Venetian blinds
  2. #C This is a finite version of the infinite p2 oscillator in which
  3. #C rows alternate ..., full, full, empty, empty, full, full, ...  Two
  4. #C types of edges are shown, one perpendicular to the rows and one at
  5. #C a 45 degree angle.  (It's easy to prove that there's no p2 edge
  6. #C parallel to the rows.)  Also shown are 3 type of corners where the
  7. #C edges meet.  This partly answers a question of John Conway's:
  8. #C What's the maximum average density of an infinite p2 pattern, and
  9. #C can it be obtained as a limit of finite p2 patterns?  This shows
  10. #C that 1/2 is a lower bound.  Hartmut Holzwart showed that 8/13 is
  11. #C an upper bound.
  12. #O Dean Hickerson, drhickerson@ucdavis.edu  9/13/92
  13. x = 71, y = 74
  14. 18bob2ob2o6bo6b2ob2obo$18b2obobo3b2obobob2o3bobob2o$21bo3bo2bobobobo2b
  15. o3bo$21bo2b3o3bobo3b3o2bo$20b2obo5bobobo5bob2o$23bo2b2obo3bob2o2bo$20b
  16. 2o2b3o2b2ob2o2b3o2b2o$16b2obob2o3b2ob5ob2o3b2obob2o$2ob2o3b2o6b2ob2o4b
  17. o11bo4b2ob2o$bobo3bobo9bo2b2obobo7bobob2o2bo$bo2bo2bo8b2o2b3o2b2ob7ob
  18. 2o2b3o2b2o$2bobobo2bo2b2obob2o3b2ob13ob2o3b2obob2o$3bob2ob2o2b2ob2o4bo
  19. 19bo4b2ob2o$5b2o8bo2b2obobo15bobob2o2bo$4bo7b2o2b3o2b2ob15ob2o2b3o2b2o
  20. $2b3obob2obob2o3b2ob21ob2o3b2obob2o$bo3b3obob2o4bo27bo4b2ob2o$b3o3bo3b
  21. o2b2obobo23bobob2o2bo$4b2o3bo2b3o2b2ob23ob2o2b3o2b2o$3bo2bob3o3b2ob29o
  22. b2o3b2obob2o2b2o$3bob2obo4bo35bo4b2ob2o3bo2bo$4b2ob2ob2obobo31bobob2o
  23. 2bo6bobobo$9b2o2b2ob31ob2o2b3o2b2o2b2obo2bo$4b2o2bob2ob37ob2o3b2obo4b
  24. 2obo$4bo2bobo43bo4b2ob2o3b2ob2o$6b2obobo39bobob2o2bobob2o3bobo$10bob
  25. 39ob2o2b3o2bobob2obo$9b2ob42ob2o3b4o2bobo$4bob2obobo45bo7bo2b2o$4b2obo
  26. bo45bobob2o4bobo2bo$11b44ob2o2b5o2bobo$9bo3b45ob3o2b3obo$61bo2bobo$8bo
  27. bobo46bobo2bobobo$4b2obo3bob46ob2obo3b2o$4bob2obob51o$8bobo$8bobo$4bob
  28. 2obob51o$4b2obo3bob46ob2obo3b2o$8bobobo46bobo2bobobo$61bo2bobo$9bo3b
  29. 45ob3o2b3obo$11b44ob2o2b5o2bobo$4b2obobo45bobob2o4bobo2bo$4bob2obobo
  30. 45bo7bo2b2o$9b2ob42ob2o3b4o2bobo$10bob39ob2o2b3o2bobob2obo$6b2obobo39b
  31. obob2o2bobob2o3bobo$4bo2bobo43bo4b2ob2o3b2ob2o$4b2o2bob2ob37ob2o3b2obo
  32. 4b2obo$9b2o2b2ob31ob2o2b3o2b2o2b2obo2bo$4b2ob2ob2obobo31bobob2o2bo6bob
  33. obo$3bob2obo4bo35bo4b2ob2o3bo2bo$3bo2bob3o3b2ob29ob2o3b2obob2o2b2o$4b
  34. 2o3bo2b3o2b2ob23ob2o2b3o2b2o$b3o3bo3bo2b2obobo23bobob2o2bo$bo3b3obob2o
  35. 4bo27bo4b2ob2o$2b3obob2obob2o3b2ob21ob2o3b2obob2o$4bo7b2o2b3o2b2ob15ob
  36. 2o2b3o2b2o$5b2o8bo2b2obobo15bobob2o2bo$3bob2ob2o2b2ob2o4bo19bo4b2ob2o$
  37. 2bobobo2bo2b2obob2o3b2ob13ob2o3b2obob2o$bo2bo2bo8b2o2b3o2b2ob7ob2o2b3o
  38. 2b2o$bobo3bobo9bo2b2obobo7bobob2o2bo$2ob2o3b2o6b2ob2o4bo11bo4b2ob2o$
  39. 16b2obob2o3b2ob5ob2o3b2obob2o$20b2o2b3o2b2ob2o2b3o2b2o$23bo2b2obo3bob
  40. 2o2bo$20b2obo5bobobo5bob2o$21bo2b3o3bobo3b3o2bo$21bo3bo2bobobobo2bo3bo
  41. $18b2obobo3b2obobob2o3bobob2o$18bob2ob2o6bo6b2ob2obo!
  42.