home *** CD-ROM | disk | FTP | other *** search
Text File | 1993-01-18 | 2.6 KB | 42 lines | [TEXT/LLAB] |
- #N Venetian blinds
- #C This is a finite version of the infinite p2 oscillator in which
- #C rows alternate ..., full, full, empty, empty, full, full, ... Two
- #C types of edges are shown, one perpendicular to the rows and one at
- #C a 45 degree angle. (It's easy to prove that there's no p2 edge
- #C parallel to the rows.) Also shown are 3 type of corners where the
- #C edges meet. This partly answers a question of John Conway's:
- #C What's the maximum average density of an infinite p2 pattern, and
- #C can it be obtained as a limit of finite p2 patterns? This shows
- #C that 1/2 is a lower bound. Hartmut Holzwart showed that 8/13 is
- #C an upper bound.
- #O Dean Hickerson, drhickerson@ucdavis.edu 9/13/92
- x = 71, y = 74
- 18bob2ob2o6bo6b2ob2obo$18b2obobo3b2obobob2o3bobob2o$21bo3bo2bobobobo2b
- o3bo$21bo2b3o3bobo3b3o2bo$20b2obo5bobobo5bob2o$23bo2b2obo3bob2o2bo$20b
- 2o2b3o2b2ob2o2b3o2b2o$16b2obob2o3b2ob5ob2o3b2obob2o$2ob2o3b2o6b2ob2o4b
- o11bo4b2ob2o$bobo3bobo9bo2b2obobo7bobob2o2bo$bo2bo2bo8b2o2b3o2b2ob7ob
- 2o2b3o2b2o$2bobobo2bo2b2obob2o3b2ob13ob2o3b2obob2o$3bob2ob2o2b2ob2o4bo
- 19bo4b2ob2o$5b2o8bo2b2obobo15bobob2o2bo$4bo7b2o2b3o2b2ob15ob2o2b3o2b2o
- $2b3obob2obob2o3b2ob21ob2o3b2obob2o$bo3b3obob2o4bo27bo4b2ob2o$b3o3bo3b
- o2b2obobo23bobob2o2bo$4b2o3bo2b3o2b2ob23ob2o2b3o2b2o$3bo2bob3o3b2ob29o
- b2o3b2obob2o2b2o$3bob2obo4bo35bo4b2ob2o3bo2bo$4b2ob2ob2obobo31bobob2o
- 2bo6bobobo$9b2o2b2ob31ob2o2b3o2b2o2b2obo2bo$4b2o2bob2ob37ob2o3b2obo4b
- 2obo$4bo2bobo43bo4b2ob2o3b2ob2o$6b2obobo39bobob2o2bobob2o3bobo$10bob
- 39ob2o2b3o2bobob2obo$9b2ob42ob2o3b4o2bobo$4bob2obobo45bo7bo2b2o$4b2obo
- bo45bobob2o4bobo2bo$11b44ob2o2b5o2bobo$9bo3b45ob3o2b3obo$61bo2bobo$8bo
- bobo46bobo2bobobo$4b2obo3bob46ob2obo3b2o$4bob2obob51o$8bobo$8bobo$4bob
- 2obob51o$4b2obo3bob46ob2obo3b2o$8bobobo46bobo2bobobo$61bo2bobo$9bo3b
- 45ob3o2b3obo$11b44ob2o2b5o2bobo$4b2obobo45bobob2o4bobo2bo$4bob2obobo
- 45bo7bo2b2o$9b2ob42ob2o3b4o2bobo$10bob39ob2o2b3o2bobob2obo$6b2obobo39b
- obob2o2bobob2o3bobo$4bo2bobo43bo4b2ob2o3b2ob2o$4b2o2bob2ob37ob2o3b2obo
- 4b2obo$9b2o2b2ob31ob2o2b3o2b2o2b2obo2bo$4b2ob2ob2obobo31bobob2o2bo6bob
- obo$3bob2obo4bo35bo4b2ob2o3bo2bo$3bo2bob3o3b2ob29ob2o3b2obob2o2b2o$4b
- 2o3bo2b3o2b2ob23ob2o2b3o2b2o$b3o3bo3bo2b2obobo23bobob2o2bo$bo3b3obob2o
- 4bo27bo4b2ob2o$2b3obob2obob2o3b2ob21ob2o3b2obob2o$4bo7b2o2b3o2b2ob15ob
- 2o2b3o2b2o$5b2o8bo2b2obobo15bobob2o2bo$3bob2ob2o2b2ob2o4bo19bo4b2ob2o$
- 2bobobo2bo2b2obob2o3b2ob13ob2o3b2obob2o$bo2bo2bo8b2o2b3o2b2ob7ob2o2b3o
- 2b2o$bobo3bobo9bo2b2obobo7bobob2o2bo$2ob2o3b2o6b2ob2o4bo11bo4b2ob2o$
- 16b2obob2o3b2ob5ob2o3b2obob2o$20b2o2b3o2b2ob2o2b3o2b2o$23bo2b2obo3bob
- 2o2bo$20b2obo5bobobo5bob2o$21bo2b3o3bobo3b3o2bo$21bo3bo2bobobobo2bo3bo
- $18b2obobo3b2obobob2o3bobob2o$18bob2ob2o6bo6b2ob2obo!
-